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DAVID R. BRILLINGER*

Comment

At the outset I would like to congratulate Ker-Chau Li
for developing a new data analytic tool and for providing
such a substantial study of it. Regarding the technique it-
self, an issue that arises quickly is just how robust is it to
departures from the fundamental assumption of Section 3?
To address this somewhat I attempted to employ the tech-
nique on some spatial-temporal global meteorological data.
I was interested in studying motion present in this data.
Suppose that Y(x, y, ) denotes the measurement made at
location (x, y) at time ¢. Suppose that energy is propagating
as a plane wave. The motion may then be represented as

flex + By + 1)
for a function f. This corresponds to movement in direction
¢, given by tan ¢ = B/a, with speed y/Va? + B2. If two
such waves are present then one can comtemplate a model

Y(x,y,t) = fila, X + By + 7id)
+ filax + Boy + v,t) + noise.

* David R. Brillinger is Professor, Department of Statistics, University
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In the circumstance of concern, the measurements were made
for (x, y, ©) on a lattice. Such data values, (x, y, ), do not
satisfy the critical assumption of Section 3. In an attempt
to have such a condition obtain I proceeded as follows.
Consider a normal distribution ¢ (x)¢(y)¢(#) centered on
the domain of measurements. Obtain realizations of this
distribution and let (x;, y;, ;) denote the location on the lat-
tice closest to the jth realization. Now subject the data (x;,
Yi» 4, Y(x;, ¥, £))(j = 1, ..., n) to the analysis of the article.
I wondered if Ker-Chau Li’s technique would detect motion
of weather fronts. I have to report that I was not successful.
However the technique certainly did work with correspond-
ing simulated data. (In the simulations, there was a single
wave, and f was the cosine function.) There are clearly many
things going on in the example, so the failure is not dis-
couraging. The analysis was carried out in S. This package
is so widely used now, so one thing I recommend to Ker-
Chau Li is that he prepare versions of his programs in S.

I would like to end by mentioning how satisfied Ker-
Chau Li’s thesis supervisor, Jack Kiefer, would surely have
been to see how Ker-Chau Li’s work has become such a
fine blend of theory and practice.

Comment

The article by Li proposes a new and very useful ap-
proach to dimensionality reduction in multivariate non-
parametric regression. The advantage of this approach as
compared to others is the exceptional simplicity both of the
idea and of the computational tools. We suppose that this
would give rise to a wide implementation of sliced inverse
regression (SIR).

As with many simple ideas, of course, SIR will also have
its pitfalls in “nonsimple” situations. In particular, SIR de-
pends very much on the probability structure of the x vari-
ables described by the following:

* W. Hirdle is Professor, CORE, Université Catholique de Louvain,
34, Voie du Roman Pays, B-1348 Louvain-la-Neuve, Belgium. A. B.
Tsybakov is Senior Researcher, Institute for Problems of Information
Transmission, Academy of Sciences, U.S.S.R., 101447 Moscow, GSP-
4, Ermolovoystr., 19 U.S.S.R.

For any b in R?, the conditional expectation E(bx | 8,X, . . ., Bxx) is linear

in BX, ..., BX; that is, for some constants, ¢y, Cy, ..., Ck,

E(bX|BiX, ..., BxX) = co + 13X + -+ + cxBxx.  (3.1)

A nonsimple situation might be where the distribution of
x is a mixture of two normal distributions or has a more
complicated nonelliptical structure. In this case, a non-
parametric technique based on estimating the multivariate
density of x = (x;, ..., X,) might be reasonable to check
the assumption (3.1). We discuss an approach based on this
(more complicated) technique later.

There are at least two questions that are important for a
practitioner: How to choose the number of principal direc-
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tions K and how to choose the number of slices H? These
questions are addressed to some extent, but we feel that
they deserve some more comments.

It is said that the root n consistency property in estima-
tion of directions holds no matter how H is chosen and that
it even holds when each slice contains only two observa-
tions. This is probably somewhat misleading. If H can be
chosen arbitrarily, then it seems possible to use the simplest
estimate, that is, to put H = 1. But this is, of course, bi-
zarre, since in this case p, = 1 and the estimate will be
close to m, = E(Z) = 0. When H increases, the number
of nontrivial eigenvectors of the matrix V will also increase,
although it will not be evident for what H all the K principal
eigenvectors are present. This could suggest, rather, that
should be chosen large to make sure that we catch all the
principal directions. Thus one might incline to the other
extreme, that is, choosing only two observations per slice.
To understand this extreme, let us think of one observation
per slice, then V = S7_;%X. Thus the principal directions
are chosen from the covariance structure of x, as in prin-
cipal components analysis. Thus, between these two ex-
tremes of SIR, there is a lot of freedom, which makes al-
ternative approaches interesting. One of them is based on
a different method of identifying the e.d.r. space, another
is based on average derivative estimation (ADE). Finally,
we propose a nonparametric version of factor analysis..

Let us consider instead of V the matrix

B = EJE(x | pEX" | y)]

(assume here that x is already standardized). Elements of
B can be expressed as

bjk = J my( y)m(y)F(dy),

where my(y) is the regression function of y on the jth com-
ponent of x and F is the marginal distribution of y. To es-
timate by, replace F by the empirical distribution F,, and
m;, m; by the nonparametric regression estimates r;, 1.
Thus

. 1 <
by = f i YIi( Y)F (dy) = ;E Ry y,).-
i=1

The functions ;, #, may be kernel, orthogonal series, or
any other estimates. If /1 is a regressogram, then we get
something very similar to SIR, namely,
L 1S
B=- >, m(yam (),
i=1
where

m(y) = Z 21{ysen,,y € L)X,

nPp p=1 s=1

This estimate will of course have a bias decreasing as H —
oo, Similar functionals, like the average derivative, have a
variance proportional to 1/n. We suspect, therefore, that a
careful choice of H will yield a Vn convergence of B to
B.

All the eigenvectors of B that correspond to nonzero ei-
genvalues are contained in the e.d.r. space. In fact, it fol-
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lows from Corollary 3.1 that
E(x | ) =B+ -+ + (),

where c(y) are some functions. Therefore B =
S ne1 CimBiBh, Where ¢, = Elc{y)c,(y)]. Thus if b is not

in the e.d.r. space, that is, b L {B,, ..., Bk}, then Bb =
0.
In the simplest case, where K = 1, one gets
B = 511/31/3{, n = E[C%(}’)L

Assume that B, is normalized, so that ||8,| = 1. Then B8, is
the eigenvector of B corresponding to the maximal eigen-
value é;;:

BB, = ¢upi; Vb:|b=1.

Another approach, first developed for the case K = 1, is
ADE; see Hérdle and Stoker (1989), Hirdle, Hart, Marron,
and Tsybakov (1989). The average derivative is defined by

é, = b"Bb

f Vm(x)fX(x) dx,

where Vm(x) is the gradient of the unknown regression
function m(x) = E(Y | X = x) and fX(x) is the marginal
density of x. The average derivative can be estimated \/n
consistently. Although all the previous work on ADE was
concerned with the case of K = 1, its extension to the more
general model y = m(B7x, ..., Bix, €) is straightforward.
In fact, the average derivative is then

AD = E[Vam(BiX, ..., Bix, )]
=yt o+ ek,
where
0
- EI:E; m(B{x X} ﬁjt-lxs t, ﬁj?;'lx’ D) ﬁlj(‘xs 8) ]-
t=B,Tx

Define the matrix B, = AD - AD". This matrix is an an-
alog of B, defined earlier, since all the eigenvectors of B
that correspond to nonzero eigenvalues are in the e.d.r. space.
Thus, in the same way as earlier, we can choose the esti-
mates [31, e, ,BK of the principal directions as the first K
eigenvectors of

= AD AD’,
where AD is an average derivative estimator.

The choice of the number of principal directions K can
be addressed in at least three different ways.

1. The candidates for principal directions are known and
ordered; the first K directions are principal; K must be es-
timated.

2. The candidates for principal directions are known; the
number K of principal directions and their positions are un-
known; these directions must be estimated.

3. The candidates for principal directions are unknown;
their number is also unknown.

Li proposes an interesting way of treating the problem in
case (3) for normally distributed x. His approach is based
on the correlation structure of x only. This can be viewed
as an analog to sequential hypothesis testing techniques in
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linear regression. However, the extension to the case of
non-Gaussian x seems to be somewhat difficult.

Note that (1) is solved if one has a solution of (2). Under
(2) we can assume, in general, that possible candidates for
the principal directions are all the coordinate axes. For ex-
ample, this assumption is quite reasonable if one thinks of
a nonparametric version of factor analysis. Thus the un-
known regression function m(x) (x = (X, ..., X,) € R”) is
of the form

m(x) jkE{l,...,P},

K
= 2 gik(xjk ’
K=1
where K < p is some integer and K = 1. The problem is
to estimate the set J = {ji, ..., jx}. Given a sample (Xx,,
Y), , (x,, Y,) define

1 < (X5 — X;
=5 A

n i=1 n
)

Here, f,; is the kernel estimate of the marginal density f; of
Jjth component, the x,’s are the components of the vectors
X; = (X3, - - -, X;), K is a kernel, and &, > 0 is a bandwidth.
Consider the following procedure of estimating J.

Joi(X))

1. Calculate the quantities

n

1
Sy = ; 2 rﬁj(xij)s

i=1

j=1,...,p.

2. Arrange the S,; in the decreasing order
Sf,l) > SLZ) >0 > Sftp).

Let (1), be the integer that equals j, with maximal value S,;
= SO Jet (2), be the integer that equals j with S,; = S.
Thus

&) =J€E{l,...,p}: Sy =S®

Without loss of generality, assume that all S are different
[thus (K), is uniquely defined]. In particular, we have
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1
K) —
Sn 1 - 2 w0, (XKi),) -

3. Choose K, as the minimizer of the following statistic:
K, = [arg min(S? + Kb,)] — 1,
K=p
where b, is a sequence that tends to zero as n — « and
nb? — o,

The estimate of the set {ji, ..., jx} is defined as J, =
{(D),, ..., (K.}, and the corresponding estimate of the
regression function is

mn(x) = 2 gnjk(xjk)’
KeJ,
where
_ v, nj(xj)
gnj(x]) f;,j(xj) .

It can be proved that under suitable assumptions P{J, = J}
— 1, n — « (Hérdle and Tsybakov 1990). Moreover, the
estimate m,(x) is pointwise asymptotically normal and con-
verges to m(x) with the rate that is achievable for the case
of univariate regression function estimation.

This idea of estimating “principal components” can be
viewed as a modification of AIC-BIC criteria, with the ad-
ditional reordering of components according to some sto-
chastic criterion. Note that, instead of S,;’s, we could take
for reordering any other data-dependent quantities that are
asymptotically nonzero for principal components and are
zero for negligible components.
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