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Comment 

DAVID R. BRILLINGER* 

At the outset I would like to congratulate Ker-Chau Li 
for developing a new data analytic tool and for providing 
such a substantial study of it. Regarding the technique it- 
self, an issue that arises quickly is just how robust is it to 
departures from the fundamental assumption of Section 3? 
To address this somewhat I attempted to employ the tech- 
nique on some spatial-temporal global meteorological data. 
I was interested in studying motion present in this data. 
Suppose that Y(x, y, t) denotes the measurement made at 
location (x, y) at time t. Suppose that energy is propagating 
as a plane wave. The motion may then be represented as 

f ( a  + PY+ Yt) 
for a function f. This corresponds to movement in direction 
4 ,  given by tan 4 = P/a ,  with speed y/g=. If two 
such waves are present then one can comtemplate a model 

+ f,(a2x + P2y + y2t) + noise. 

* David R. Brillinger is Professor, Department of Statistics, University 
of California, Berkeley, CA 94720. 

W. HARDLEAND A. B. TSYBAKOV* 

The article by Li proposes a new and very useful ap- 
proach to dimensionality reduction in multivariate non-
parametric regression. The advantage of this approach as 
compared to others is the exceptional simplicity both of the 
idea and of the computational tools. We suppose that this 
would give rise to a wide implementation of sliced inverse 
regression (SIR). 

As with many simple ideas, of course, SIR will also have 
its pitfalls in "nonsimple" situations. In particular, SIR de- 
pends very much on the probability structure of the x vari- 
ables described by the following: 

* W. Hirdle is Professor, CORE, Universitk Catholique de Louvain, 
34, Voie du Roman Pays, B-1348 Louvain-la-Neuve, Belgium. A. B. 
Tsybakov is Senior Researcher, Institute for Problems of Information 
Transmission, Academy of Sciences, U.S.S.R., 101447 Moscow, GSP- 
4, Ermolovoystr., 19 U.S.S.R. 

In the circumstance of concern, the measurements were made 
for (x, y, t) on a lattice. Such data values, (x, y, t), do not 
satisfy the critical assumption of Section 3. In an attempt 
to have such a condition obtain I proceeded as follows. 
Consider a normal distribution 4(x)+ (y)+ (t) centered on 
the domain of measurements. Obtain realizations of this 
distribution and let (xj, yj, tj) denote the location on the lat- 
tice closest to the jth realization. Now subject the data (xi, 
yj, tj, Y(xj, yj, tj))(j = 1, . . . ,n) to the analysis of the article. 
I wondered if Ker-Chau Li's technique would detect motion 
of weather fronts. I have to report that I was not successful. 
However the technique certainly did work with correspond- 
ing simulated data. (In the simulations, there was a single 
wave, and f was the cosine function.) There are clearly many 
things going on in the example, so the failure is not dis- 
couraging. The analysis was carried out in S. This package 
is so widely used now, so one thing I recommend to Ker- 
Chau Li is that he prepare versions of his programs in S. 

I would like to end by mentioning how satisfied Ker- 
Chau Li's thesis supervisor, Jack Kiefer, would surely have 
been to see how Ker-Chau Li's work has become such a 
fine blend of theory and practice. 

Comment 

For any b in RP,the conditional expectation E(bx / Pix, . . ., P,x) is linear 
in @,x,. . .,0,x; that is, for some constants, c,, c,, . . ., c,, 

A nonsimple situation might be where the distribution of 
x is a mixture of two normal distributions or has a more 
complicated nonelliptical structure. In this case, a non-
parametric technique based on estimating the multivariate 
density of x = (x,, . . ., x,) might be reasonable to check 
the assumption (3.1). We discuss an approach based on this 
(more complicated) technique later. 

There are at least two questions that are important for a 
practitioner: How to choose the number of principal direc- 
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tions K and how to choose the number of slices H? These 
questions are addressed to some extent, but we feel that 
they deserve some more comments. 

It is said that the root n consistency property in estima- 
tion of directions holds no matter how H is chosen and that 
it even holds when each slice contains only two observa- 
tions. This is probably somewhat misleading. If H can be 
chosen arbitrarily, then it seems possible to use the simplest 
estimate, that is, to put H = 1. But this is, of course, bi- 
zarre, since in this case ph = 1 and the estimate will be 
close to mh = E ( Z )  = 0.  When H increases, the number 
of nontrivial eigenvectors of the matrix V will also increase, 
although it will not be evident for what H all the K principal 
eigenvectors are present. This could suggest, rather, that H 
should be chosen large to make sure that we catch all the 
principal directions. Thus one might incline to the other 
extreme, that is, choosing only two observations per slice. 
To understand this extreme, let us think of one observation 
per slice, then f = X ~ = ~ X $ ~ .Thus the principal directions 
are chosen from the covariance structure of x, as in prin- 
cipal components analysis. Thus, between these two ex- 
tremes of SIR, there is a lot of freedom, which makes al- 
ternative approaches interesting. One of them is based on 
a different method of identifying the e.d.r. space, another 
is based on average derivative estimation (ADE). Finally, 
we propose a nonparametric version of factor analysis. 

Let us consider instead of V the matrix 

(assume here that x is already standardized). Elements of 
B can be expressed as 

where mj(y) is the regression function of y on the jth com- 
ponent of x and F is the marginal distribution of y. To es- 
timate bjk, replace F by the empirical distribution F,, and 
mj, mk by the nonparametric regression estimates mj, mk. 
Thus 

The functions mj, mk may be kernel, orthogonal series, or 
any other estimates. If f i  is a regressogram, then we get 
something very similar to SIR, namely, 

1 " 

where 
. H n 

This estimate will of course have a bias decreasing as H + 
a.Similar functionals, like the average derivative, have a 
variance proportional to l l n .  We suspect, therefore, that a 
careful choice of H will yield a fi convergence of B to 
B. 

All the eigenvectors of B that correspond to nonzero ei- 
genvalues are contained in the e.d.r, space. In fact, it fol- 

lows from Corollary 3.1 that 

where cj(y) are some functions. Therefore B = 

Cjm~j/3z,where Zjm = E[cj( y)cm( y)] . Thus if b is not 
in the e.d.r. space, that is, b I {PI, . . ., PK), then Bb = 

0. 
In the simplest case, where K = 1, one gets 

Assume that p1is normalized, so that IIP,JJ  = 1. Then P1is 
the eigenvector of B corresponding to the maximal eigen- 
value Ell: 

Another approach, first developed for the case K = 1, is 
ADE; see Hiirdle and Stoker (1989), Hkdle, Hart, Marron, 
and Tsybakov (1989). The average derivative is defined by 

where Vm(x) is the gradient of the unknown regression 
function m(x) = E(Y ( X = x) and fX(x) is the marginal 
density of x. The average derivative can be estimated 6 
consistently. Although all the previous work on ADE was 
concerned with the case of K = 1, its extension to the more 
general model y = m(~Tx,. . ., Pix, E )  is straightforward. 
In fact, the average derivative is then 

AD = . . . ,pix, E)] ~ [ ~ , m ( p T x ,  

= c1P1+ . . . + cKPK, 
where 

Define the matrix B1 = AD .ADT. This matrix is an an- 
alog of B, defined earlier, since all the eigenvectors of B 
that correspond to nonzero eigenvalues are in the e.d.r. space. 
Thus, in the same way as earlier, we can choose the esti- 
mates p l ,  . . ., pKof the principal directions as the first K 
eigenvectors of 

B1= Ai) AD^, 
where AD is an average derivative estimator. 

The choice of the number of principal directions K can 
be addressed in at least three different ways. 

1. The candidates for principal directions are known and 
ordered; the first K directions are principal; K must be es- 
timated. 

2. The candidates for principal directions are known; the 
number K of principal directions and their positions are un- 
known; these directions must be estimated. 

3. The candidates for principal directions are unknown; 
their number is also unknown. 

Li proposes an interesting way of treating the problem in 
case (3) for normally distributed x. His approach is based 
on the correlation structure of x only. This can be viewed 
as an analog to sequential hypothesis testing techniques in 
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linear regression. However, the extension to the case of 
non-Gaussian x seems to be somewhat difficult. 

Note that ( 1 )  is solved if one has a solution of ( 2 ) .Under 
( 2 ) we can assume, in general, that possible candidates for 
the principal directions are all the coordinate axes. For ex- 
ample, this assumption is quite reasonable if one thinks of 
a nonparametric version of factor analysis. Thus the un- 
known regression function m(x) (x  = ( x , ,  . . . , xp) E RP)is 
of the form 

K 

m(x) = C gj,(xj,), jk E { I ,  . . . ,P I ,  
K= 1 

where K < p is some integer and K r 1 .  The problem is 
to estimate the set J = { j , ,  . . ., jK}. Given a sample (x,, 
Y , ) ,  . . ., (x , ,  Y,) define 

1 " x , ,- x. 
rnj(x,)= nh, c Y i K ( y )  9 

1 " x..- x .  
fnj(xj)= -nh, K(?). 

Here, fnj is the kernel estimate of the marginal density4 of 
jth component, the xij's are the components of the vectors 
xi = (x i , , . . . , xip),K is a kernel, and h, > 0 is a bandwidth. 
Consider the following procedure of estimating J .  

1 .  Calculate the quantities 
. n 

2 .  Arrange the Snj in the decreasing order 

$1' 2 sL2' 2 . .. 2 SF'. 
Let ( I ) ,  be the integer that equals j, with maximal value Snj 
= s:'; let (2) ,  be the integer that equals j with Snj = s:'. 
Thus 

( K ) ,  = j E ( 1 ,  . . .,p )  : S, = sLK'. 
Without loss of generality, assume that all sLk'are different 
[thus ( K ) ,  is uniquely defined]. In particular, we have 

3 .  Choose K, as the minimizer of the following statistic: 

K, = [arg min(SiP) + Kb,)] - 1 ,  
K 5 p  

where b, is a sequence that tends to zero as n -t a and 
nbi -t a. 

The estimate of the set { j , ,  . . ., jK} is defined as J, = 

{ ( I ) , ,  . . ., (K,),}, and the corresponding estimate of the 
regression function is 

mn(x) = C g,(xjk), 
K E J ,  

where 

It can be proved that under suitable assumptions P{J, = J }  
-t 1 ,  n -t a (Hikdle and Tsybakov 1990). Moreover, the 
estimate m,(x) is pointwise asymptotically normal and con- 
verges to m(x) with the rate that is achievable for the case 
of univariate regression function estimation. 

This idea of estimating "principal components" can be 
viewed as a modification of AIC-BIC criteria, with the ad- 
ditional reordering of components according to some sto- 
chastic criterion. Note that, instead of Snj's,we could take 
for reordering any other data-dependent quantities that are 
asymptotically nonzero for principal components and are 
zero for negligible components. 
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